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Abstract. Hand detection has many important applications in HCI,
yet it is a challenging problem because the appearance of hands can vary
greatly in images. In this paper, we propose a novel method for effi-
cient pixel-level hand detection. Unlike previous method which assigns a
binary label to every pixel independently, our method estimates a proba-
bility shape mask for a pixel using structured forests. This approach can
better exploit hand shape information in the training data, and enforce
shape constraints in the estimation. Aggregation of multiple predictions
generated from neighboring pixels further improves the robustness of
our method. We evaluate our method on both ego-centric videos and un-
constrained still images. Experiment results show that our method can
detect hands efficiently and outperform other state-of-the-art methods.

1 Introduction

In recent years, we have witnessed great progress in object detection in the field
of computer vision. Successful applications can be found in face detection [1],
pedestrian detection [2], etc. Nevertheless, hand detection is still a challenging
problem as the appearance of hands can vary greatly in images. For instances,
the shape of a hand can change dramatically due to the articulation of fingers
as well as changes in viewpoint. A hand can be (partially) occluded while inter-
acting with other objects. The color of a hand can vary greatly under different
illuminations, and a hand can even appear to be textureless under extreme illu-
minations. Generic object detection methods [7] based on gradients often have
difficulties in representing the varying appearance of hands. Heuristic skin-color
detection methods [3] may also fail in practice when skin color is not discrimi-
native enough from the background.

Recently, ego-centric cameras have become more and more popular. Images
captured by such cameras often have a dynamic background, which makes hand
detection even more difficult. A pixel labeling approach recently proposed by Li
and Kitani [15] has shown to be quite successful in hand detection in ego-centric
videos. In this paper, we extend such a pixel labeling approach to a structured
image labeling problem. Instead of assigning a binary label to every pixel in-
dependently, our method estimates a probability shape mask for a pixel using
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Fig. 1: Introduction to our method. a) Original image. b) Pixel-level hand detec-
tion by single pixel prediction. c) Pixel-level hand detection by structured label
prediction.

structured forests. As shown in Fig. 1, our method can detect hand regions more
robustly than the previous method which predicts pixel labels independently. In
summary, our proposed approach has the following advantages:

– As hand pixel labels are not independent, our method explicitly models a
pixel using a probability shape mask. This allows our method better utilize
hand shape information in the training data and enforce shape constraints
in the estimation.

– Since a probability shape mask is determined for a pixel, pixels in its neigh-
borhood would also benefit from this prediction. Aggregation of multiple
predictions generated from neighboring pixels further improves the robust-
ness of our method.

– Our method is extremely efficient in generating a probability map of hands
using random forest scheme.

2 Literature Review

Hand detection has been studied as part of human layout parsing and gesture
analysis for many years. Hand detection methods can be categorized into three
main approaches, namely 1) color-based methods, 2) model-based methods and
3) motion-based methods.

Methods based on skin color usually build a skin model in a color space
for detecting hand regions. Mixture of Gaussians [3] is commonly used to model
colors of skin and non-skin regions for hand localization [4] and hand tracking [5,
6]. Color-based methods often require a prior knowledge of skin color, extracted
either from training data or from face detection, to build the skin model. These
methods, however, often fail in unconstrained images and ego-centric videos
where changes in illuminations cause a large variation in skin color.

Model-based methods usually model the appearance of hands using a hand
template. They can be implemented as a Viola & Jones like boosted detector [1],
or as a HOG detector built from a large number of images [7], or learned as an
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ensemble of edges [8, 9] from a set of 2D projections of a 3D synthetic hand
model. Color information can also be used to further create more proposals to
improve the detection performance [10]. However, their applications are often
limited to a small number of hand configurations. To overcome this problem,
these methods often exploit more training data in order to cover a larger con-
figuration space. It is also possible to detect hands as part of human pictorial
structure [11], which may bring more context information and allow inferring
hand position via optimization. This is a common practice for still images, but
usually it requires at least the upper body being visible for the inference of
human layout.

Motion-based methods are mostly used for ad-hoc applications, e.g., activity
analysis and gesture recognition. They segment foreground hands from back-
ground by motion and appearance cues [12–14]. Hands can usually be tracked
easily and it does not require a strong appearance model in most cases. However,
motion-based methods are often not suitable for moving cameras which produce
images with lots of background motion.

Recently, ego-centric cameras, e.g., Google Glasses and GoPro cameras, have
become more and more popular. A local-appearance-based pixel labeling method
recently proposed by Li and Kitani [15] has shown to be quite successful in deal-
ing with dynamic background and varying appearance of hands in ego-centric
videos. However, their method only predicts the label of every pixel indepen-
dently without considering any shape constraint. In this paper, we are going to
investigate how local hand shape information can improve hand detection.

3 Shape-aware Structured Forests

In this section, we first briefly review the pixel-level hand detection using ran-
dom forests. We then extend this framework by introducing a shape mask to
represent the structure information. We refer to our method as Shape-aware
Structured Forests. We also present an intermediate mapping that can acceler-
ate the calculation of information gain during the training process. Finally, a
multi-scale hand detection method will be illustrated in details.

3.1 Random Forests

Given a patch Ip ∈ Rw×w×3 with a size of w × w centered at pixel p in a color
image I, we first extract a feature vector xp ∈ X using channel features [16].
A decision tree fΘ(xp), parameterized by Θ, is learned to map xp to a binary
label yp ∈ {0, 1}, which indicates whether p is a hand pixel (i.e., yp = 1) or not
(i.e., yp = 0). A random forest is a collection of such decision trees, each with an
independent parameter Θi. The output of the random forest F (xp) is the final
class label y∗p, which is obtained as the ensemble of the posterior distribution
Pi(yp|xp) in the leaf node of tree i as,

y∗p = arg max
yp

1

T

T∑
i=1

Pi(yp|xp), (1)
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where T is the number of trees in the forest.
During the training process, each decision tree is constructed independently

from a randomly sampled subset of the training data S = {(xp, yp)}. For each
decision node in a tree, one element of the feature vector xp is selected for
a binary test. Based on the binary test, a split function with parameter θ is
defined as

Φ(xp,θ) =

{
1, if θ>[x>p 1]> ≤ 0

0, otherwise
, (2)

where only the last element and one other element of θ are non-zero values.
This function splits the training data in the current node into two subsets for
its children. Usually the candidates of θ are randomly generated and our goal is
to find a candidate that maximizes the information gain, G(θ), of the current
split test. The information gain is defined as

G(θ) = H(Sj)−
∑

k∈{L,R}

|Skj |
|Sj |

H(Skj ), (3)

where Sj denotes the set of training data in node j, SLj = {(xp, yp) ∈ Sj |Φ(xp,θ) =

1} denotes the set of training data to be assigned to its left child and SRj = Sj\SLj
denotes the set of training data to be assigned to its right child, | · | denotes the
size of a set and H(·) denotes purity measurement w.r.t. yp. As in our formula-
tion, yp is a binary variable, the purity can be measured by Shannon Entropy
or Gini impurity [18]. A decision tree is constructed by splitting its nodes re-
peatedly until either the minimum number of training data in a leaf node or the
maximum depth of a tree has been reached.

During the test phase, each tree will be evaluated on an input patch according
to the split function in Eq. (2) iteratively until a leaf node is reached. The
posterior distribution stored in that node will then be used for MAP estimation
according to Eq. (1).

yp

Ip

yp0 1

Fig. 2: The main difference between random forests and structured forests.
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3.2 Learning Shape Maskes via Intermediate Mapping

For each pixel p′ in the patch Ip, similarly, a binary label can be determined by
the random forests based on the feature vector xp′ extracted from the patch Ip′ .
If these labels are considered as a whole, they form a shape mask of the hand
for the patch Ip. Obviously, pixel labels within such a shape mask should not be
independent of each other. This suggests that it will be logical to learn a shape
mask rather than just a single pixel label for an image patch. Learning a shape
mask allows shape information from the training data be exploited to enforce
shape constraints on hand detection. More precisely, the original output space
yp ∈ {0, 1} can be extended to a shape mask yp ∈ Y = {0, 1}w×w. Accordingly,
the posterior of the shape mask is stored instead of that of the central pixel in
the leaf nodes of the random forest (see Fig. 2). In this way, shape information is
considered explicitly and represented as a local binary pattern in the new output
space Y. For a set of patches sharing similar appearance features in X , our goal
becomes to predict similar binary shape mask in Y.

1 0 1 1 1 1 1 10 0 0 0 0 0Z

Y

find a ✓ that maximizes G(✓)

k-means in Y 0

Y 0
Node i

Node j Node k

kj

i

randomly select a subspace

Fig. 3: Intermediate mapping during node splitting. In the parent node, all mask
images are firstly grouped into two clusters. Next, θ for X is selected to maximize
G(θ) calculated from cluster labels in Z.

However, it will be extremely time consuming to calculate information gain
in the new shape mask space as we need to enumerate all possible states. For
instance, there will be 216×16 possible states for a patch with a size of 16 ×
16. In order to speedup the calculation of information gain, an intermediate
mapping is used during training to approximate the mask space by a lower
dimensional space as illustrated in Fig. 3. In each node splitting, a subspace
Y ′ is first randomly selected from the original mask space Y so that additional
randomness can be injected into forest training to ensure the diversity of trees.
This can be done by randomly selecting m elements from the mask yp. Next,
k-means algorithm can be performed over the subspace Y ′ to group the training
masks into 2 clusters. Either Shannon Entropy or Gini Impurity can then be
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used to compute information gain of a candidate split test. Finally, a standard
procedure like in decision forest training can be applied to find an optimal split
parameter θ for the current node.

3.3 Implementation Details

Similar to [19], we apply the structured forest to the input image of multiple
scales as illustrated in Fig. 4. We first rescale the input image I into several
copies to form an image pyramid. In each level, color and gradient features
are extracted as channel features. In particular, we extract CIELUV channels
as color features, which have been shown to be the most discriminative color
features in many applications [2, 15, 17]. As for gradient features, we simply
extract the magnitude and the orientation for each pixel and bin its orientation
into a histogram followed by Gaussian smoothing among all bins. In order to
describe the texture of a hand, we also include self-similarity features [20], which
are pairwise differences between different cells that subdivide a patch like tiles.
This will also help to differentiate the hand and non-hand regions in the patches.
As all features are either channel features of order 1 or pairwise features of
order 2, a lookup table can be built so that feature extraction can be done very
efficiently during the test phase.

1x

2x

.5x

resize

resize

resize resize

low high
Sub-window for 
structured forest

Fig. 4: Hand detection in multiple scales.

After features are extracted, a sliding window of width w can be used to
apply our structured forests. For each tree i, the patch will pass through several
binary tests until a leaf node is reached. In the leaf node, a posterior distribution
of a mask is stored as a per-pixel posterior mi(x, y) at (x, y) as illustrated in
Fig. 2 along with a per-pixel variance σi(x, y). The output of the structured
forest is defined as the weighted average of all these posteriors,

m∗(x, y) =
1

Z

T∑
i=1

e−kσi(x,y)mi(x, y). (4)
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where Z =
∑
i e
−kσi(x,y) is a normalization term, and k is a parameter for tuning

the weights. If k = 0, Z will become the total number of trees T and m∗(x, y)
will simply be the average of all the posteriors.

The final probability map of pixel-level hand detection is obtained by aver-
aging the results over different scales and sub-windows.

4 Experimental Results

We evaluate our structured hand detector on two types of data. The first type
is characterized as the hands in ego-centric videos, where fine shape is always
needed for further high-level analysis, such as action analysis or object recogni-
tion. The second type contains the hands in still images where the environment
is much more unconstrained so the hand recall rate is always low using tra-
ditional object detection approaches. We first compare our methods with the
state-of-the-art methods and analyze different factors that may affect the detec-
tion performance. We then conclude our observations for each type of data.

4.1 Hands in Ego-centric Videos: GTEA and EDSH dataset

We first test our approach on Geogia Tech Ego-centric Activity dataset (GTEA) [13].
The GTEA dataset involves little camera motion and is taken under the same
environment as it is primarily recorded for activity recognition. Similar to the
experimental setup in [15], all video clips are firstly down-sampled to 720p. There
are 7 actions for 4 subjects, one of which the ground truth labels are available
for evaluation. The original hand masks are quite noisy and sometimes confused
with the objects in hand due to unsatisfactory segmentation. We turned to the
masks made available in [15] obtained using GrabCut [21]. We performed three
experiments that use Coffee sequence for training and Tea and Peanut sequences
for testing, and use Tea sequence for training and Coffee sequence for testing.

We also test our approach on publicly available EDSH dataset 1, which in-
volves more illumination changes and camera motion. EDSH1 and EDSH2 record
both hands of a subject walking through different indoor and outdoor scenes in
order to capture the changes in skin color. EDSH-Kitchen records a subject per-
forming different activities in a kitchen, where there are great ego-motion and
hand deformations. These are typical scenarios for hand detection in daily life
and all these videos are recorded in 720p, and 442 labeled frames are used for
training our shape-aware structured forests.

As far as evaluation is concerned, the F-score, i.e. harmonic mean of precision-
recall rate, is used to measure the detection performance. We compare our result
with [15] which uses a random forest of depth 10 for single pixel prediction.

Comparison We perform the same experiment using the public code [15] ex-
tracting 9 × 9 patches using color and HOG features and also include their re-
ported best results for all 5 experiments. The F-scores are shown in Table 1. Our

1 http://www.cs.cmu.edu/˜kkitani/perpix/
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Li et al. [15] Li et
al. (Color+HOG) [15]

Ours

GTEA-Coffee 88.8 78.05 90.19±1.07

GTEA-Tea 88.0 72.53 84.30±1.12

GTEA-Peanut 76.4 74.71 84.37±2.11

EDSH2 76.8 72.31 80.43±3.10

EDSH-Kitchen 80.5 74.37 92.11±1.41

Table 1: Comparison on F-score.

Fig. 5: Sample Images of GTEA dataset: (left column) original images, (second
column) results of Li’s Method [15], and (last column) our results. From top to
bottom: GTEA-Coffee, GTEA-Peanut and GTEA-Tea. Best view in color.

approach outperforms the results produced by their code in all 5 experiments
by a large scale.The improvement mainly happens in some cluttered regions be-
cause our method can filter out the noise and also smooth the prediction of hand
region by averaging.

Figure 5 and Figure 6 show some sample images overlaid by per-pixel prob-
abilities produced by their public code and our method in GTEA and EDSH
dataset.

In Fig. 5, we find that single pixel hand prediction always fails at the edge of
hand and fingers. This is because the local neighborhood of these pixels vary a
lot when the hand is moving and deforming. Therefore it cannot collect a strong
evidence saying that the central pixel belongs to a hand. On the contrary, our
method can provide partial support from the neighborhood of edge pixels via
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Fig. 6: Sample Images of EDSH data set: (left column) original images, (second
column) results of Li’s Method [15], and (last column) our results. From top to
bottom: confusion with the door in EDSH1; shade on the hand in outdoor in
EDSH2; poor light condition in EDSH2; motion blur in EDSH-Kitchen; confusion
with sink in EDSH-Kitchen. Best view in color.

structured label predictions because these partial contributions will aggregate
into the edge pixel such that the ambiguity along the edge can be removed.

In Fig. 6, both our method and single pixel prediction may cause confusion
with certain textureless objects, e.g., doors in 1st row. However, our method
smooths these regions so that it could be easily removed by post-processing.
Meanwhile, our method is more robust to the incorrect labels in training samples
due to improper segmentation. These labels often appear along edges of hand
or suppose to be the objects in hand. For single pixel prediction, these incorrect
labels will be directly treated as negative samples during training, so they will
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affect the prediction in a fundamental way. However, it is not common in our
approach as ours is based on patch observation that is robust to pixel-level noise.
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Fig. 7: Usage of features in the structured forest. (a) Feature of channel and
similarity features. (b) Feature in different channels. The first 3 channels are
CIELUV color channels, the 4th are magnitude of gradient and the rest are gra-
dients in different orientations. (c) Spatial distribution of the features rasterized
in a 8× 8 grid.

Feature We investigate the contribution of different features by checking its
usage in the structured forests. All selected features are aggregated from all of
non-leaf nodes in the forests. First in Fig. 7(a), we show the ratio of channel fea-
tures and texture features. They are almost equally important so the pairwise
texture descriptor is essential in mask prediction. If we remove these features,
the overall F-score will generally drop by 5%. Fig. 7(b) shows that the color
features (first 3 channels) are the mostly used ones among all channel features.
This means that color is still the most discriminative feature for hand detection.
Moreover, the orientations of the gradients are more often used than their mag-
nitudes, which suggests that the edge orientation of a hand is more informative
in determining its shape mask. Fig. 7(c) shows the spatial distribution of selected
channel features in a 32× 32 patch, we can see that most of the places are used
for predicting the hand shape mask.

Size We next examine the effect of increasing the size of patches used for our
structured forests. In order to examine the hand in different resolution for ego-
centric videos, we down-sample the EDSH dataset from 720p to 320p. For both
datasets, we increase the size of training patches from half the finger size to
twice the palm size. Both in Fig. 8 and Fig. 9, there are two phases in the
F-score curve. During the increasing phase, it brings more spatial context for
shape mask prediction so the F-score will increase dramatically. In the decreas-
ing phase, the structured forests will suffer from two limitations. First, it will
over-smooth along the hand contour which makes it sensitive to the threshold
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Fig. 8: Performance of our structured forests of different patch sizes for GTEA
dataset.
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Fig. 9: Performance of our structured forests of different patch sizes for EDSH
dataset.

for detection. Second, there will not be sufficient training samples for the ex-
ponentially increased output space. Thus the forests will probably overfit the
training data. From our observation, more than half the palm size is suitable for
a robust hand detector.

Number of trees As for the common smoothing effect introduced by our
structured forests, we further examine the contribution of different number of
trees to shape detection. Figure 10(a) shows the performance of structured forests
of different number of trees. We use a forest trained from 16 × 16 patches to
observe the shape mask prediction. In Fig. 10(c), we can see that a single tree
can outline the shape but the shape contour is not smooth enough. This can be
improved either by increasing the number of trees T as shown in Fig. 10(d) or
reducing the stride width d as shown in Fig. 10(e). Both can accumulate more
spatial context in order to obtain a better shape mask.

Timing Table 2 records the time cost for evaluating a 720 × 405 image. We
compare the public code provided by the author [15] with our MATLAB imple-
mentation. We use 9 × 9 patch to train the single pixel predictor, and use the
same size in our implementation. s and m stands for single and multiple scale
detection. d is the stride width. Most of their time is spent on feature extraction
compared with ours. Moreover, the time cost can be reduced greatly for multi-
scale implementation by increasing the stride width with a little performance
drop.
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Fig. 10: Performance of different number of trees and stride width. (a) Overall
F-score w.r.t. different number of trees. (b) Original image. (c) Prediction by
forest (d = 16, T = 1). (d) Prediction by forest (d = 1, T = 16) (e) Prediction
by forest (d = 1, T = 1).

Li et al. [15] Ours (s, d=1) Ours (m, d=1) Ours (m, d=2)

Time (ms) 2138 664 3277 1129
F-Score (100×) – 79.84 81.83 80.27

Table 2: Comparison on time cost.

4.2 Hands in Still Images: BMVC dataset

We evaluate our approach on a publicly available image dataset for hand detec-
tion in still images. All images are collected from various sources as cataloged
in [10], of different resolution and imaging condition. Since there is only a bound-
ing box available for a hand in each image, we manually annotated 3904 hands,
of which 2806 are large instances. All hand images are rescaled to 128× 128 size
for sampling positive patches during training. Additional negative patches are
sampled from the rest non-skin area and the images from natural scenes. Finally,
our implementation is evaluated on 100 test images.
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Fig. 11: Performance of F-Score w.r.t. different orientations used for prediction.
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Hand orientation As the number of training samples is much bigger for train-
ing, we adopt a heuristic training method. All the hand images are rotated to the
same orientation, and then the structured forests are trained from the samples of
each orientation. Next, all predictions are merged by averaging the probability
map over different orientations similar to Eq. (4).

Figure 11 shows the performance of final ensemble model w.r.t. the number
of orientations of samples used for training. We can find the more orientations
we use, the better it performs. This is because the hands in still images appear
in arbitrary directions, so we need to enumerate all possible orientations dur-
ing training. Otherwise, this has to be done in testing phase, which becomes a
drawback in [10] which predicts an image in a long time.

Fig. 12: Sample Images. From top to bottom: original images, predictions by a
detector training from the samples with orientation downwards, predictions by
a detector training from the samples with 16 orientations.
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Figure 12 shows several sample images predicted by single direction and 16
orientations. The later can predict hands with stronger confidence than the for-
mer. Meanwhile, the overall F-score is quite low in this dataset, as the face
regions and other skin-like regions are also confused in both experiments. Thus
higher-level analysis is required in differentiating hands from other parts of hu-
man body in still images.

5 Conclusions

Our approach can detect a hand up to pixel-level accuracy in an efficient way
while achieving the state-of-the-art performance. The structured output consid-
ers the information of neighboring labels so actually each pixel is evaluated much
more than once during testing. Through the experimental results, we also find
that the color information is critical in predicting the patch while the gradient
and texture information are also relevant to the shape of the mask. This sug-
gests that further work can be done to explore the relation between gradients,
hand shapes and hand postures, which bridges the appearance with the semantic
meaning of the hand.
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